Physics World 18小时前
Understanding strongly correlated topological insulators
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

中国科研团队利用费米子张量态新方法,有效降低了数值模拟中参数数量,提高计算效率,有助于深入理解强关联拓扑绝缘体性质。

Topological insulators have generated a lot of interest in recent years because of their potential applications in quantum computing, spintronics and information processing.

The defining property of these materials is that their interior behaves as an electrical insulator while their surface behaves as an electrical conductor. In other words, electrons can only move along the material’s surface.

In some cases however, known as strongly correlated systems, the strong interactions between electrons cause this relatively simple picture to break down.

Understanding and modelling strongly correlated topological insulators, it turns out, is extremely challenging.

A team of researchers from the Kavli Institute for Theoretical Sciences, China, have recently tackled this challenge by using a new approach employing fermionic tensor states.

Their framework notably reduces the number of parameters needed in numerical simulations. This should lead to a greatly improved computational efficiency when modelling these systems.

By combining their methods with advanced numerical techniques, the researchers expect to be able to overcome the challenges posed by strong interaction effects.

This will lead to a deeper understanding of the properties of strongly correlated systems and could also enable the discovery of new materials with exciting new properties.

The post Understanding strongly correlated topological insulators appeared first on Physics World.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

拓扑绝缘体 费米子张量态 数值模拟
相关文章