cs.AI updates on arXiv.org 07月23日 12:03
Data-Driven Adaptive Gradient Recovery for Unstructured Finite Volume Computations
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于深度学习的数据驱动方法,增强非结构网格超音速守恒律数值求解中的梯度重建,提高二维欧拉方程的数值模拟精度,比传统二阶有限体积方法提高20-60%,同时提升计算效率。

arXiv:2507.16571v1 Announce Type: cross Abstract: We present a novel data-driven approach for enhancing gradient reconstruction in unstructured finite volume methods for hyperbolic conservation laws, specifically for the 2D Euler equations. Our approach extends previous structured-grid methodologies to unstructured meshes through a modified DeepONet architecture that incorporates local geometry in the neural network. The architecture employs local mesh topology to ensure rotation invariance, while also ensuring first-order constraint on the learned operator. The training methodology incorporates physics-informed regularization through entropy penalization, total variation diminishing penalization, and parameter regularization to ensure physically consistent solutions, particularly in shock-dominated regions. The model is trained on high-fidelity datasets solutions derived from sine waves and randomized piecewise constant initial conditions with periodic boundary conditions, enabling robust generalization to complex flow configurations or geometries. Validation test cases from the literature, including challenging geometry configuration, demonstrates substantial improvements in accuracy compared to traditional second-order finite volume schemes. The method achieves gains of 20-60% in solution accuracy while enhancing computational efficiency. A convergence study has been conveyed and reveal improved mesh convergence rates compared to the conventional solver. The proposed algorithm is faster and more accurate than the traditional second-order finite volume solver, enabling high-fidelity simulations on coarser grids while preserving the stability and conservation properties essential for hyperbolic conservation laws. This work is a part of a new generation of solvers that are built by combining Machine-Learning (ML) tools with traditional numerical schemes, all while ensuring physical constraint on the results.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 非结构网格 数值模拟 欧拉方程 有限体积方法
相关文章