cs.AI updates on arXiv.org 07月04日
Resolving Turbulent Magnetohydrodynamics: A Hybrid Operator-Diffusion Framework
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合PINOs和基于分数的扩散模型的混合机器学习框架,模拟二维不可压缩电阻磁流体动力学湍流的时空演化,实现高精度模拟。

arXiv:2507.02106v1 Announce Type: cross Abstract: We present a hybrid machine learning framework that combines Physics-Informed Neural Operators (PINOs) with score-based generative diffusion models to simulate the full spatio-temporal evolution of two-dimensional, incompressible, resistive magnetohydrodynamic (MHD) turbulence across a broad range of Reynolds numbers ($\mathrm{Re}$). The framework leverages the equation-constrained generalization capabilities of PINOs to predict coherent, low-frequency dynamics, while a conditional diffusion model stochastically corrects high-frequency residuals, enabling accurate modeling of fully developed turbulence. Trained on a comprehensive ensemble of high-fidelity simulations with $\mathrm{Re} \in {100, 250, 500, 750, 1000, 3000, 10000}$, the approach achieves state-of-the-art accuracy in regimes previously inaccessible to deterministic surrogates. At $\mathrm{Re}=1000$ and $3000$, the model faithfully reconstructs the full spectral energy distributions of both velocity and magnetic fields late into the simulation, capturing non-Gaussian statistics, intermittent structures, and cross-field correlations with high fidelity. At extreme turbulence levels ($\mathrm{Re}=10000$), it remains the first surrogate capable of recovering the high-wavenumber evolution of the magnetic field, preserving large-scale morphology and enabling statistically meaningful predictions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PINOs 扩散模型 MHD湍流 机器学习 数值模拟
相关文章