cs.AI updates on arXiv.org 07月29日 12:22
Visual Enumeration Remains Challenging for Multimodal Generative AI
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

研究对比分析不同AI模型在视觉计数任务中的表现,指出高精度计数技能仍属挑战。

arXiv:2402.03328v3 Announce Type: replace-cross Abstract: Many animal species can approximately judge the number of objects in a visual scene at a single glance, and humans can further determine the exact cardinality of a set by deploying systematic counting procedures. In contrast, it has been observed that even state-of-the-art AI systems have very limited enumeration skills. In this work, we propose two benchmark tasks inspired by cognitive science that allow to precisely evaluate the visual enumeration capabilities of multimodal foundation models, thereby providing an objective measure of their number sense and counting level. We consider popular visual question answering models (BLIP, LLaVA and ViLT) as well as advanced image-to-text (Gemini, GPT and Qwen) and text-to-image (DALL-E, FLUX and Stable Diffusion) AI systems. Our analyses show that even the most advanced models cannot reliably name the number of objects in simple visual stimuli or generate images containing a target number of items, as indexed by their low accuracy in both types of tasks. Especially for numbers outside the subitizing range, their responses are often far from the target numerosity, and, in stark contrast with human behavior, in many cases the distribution of errors depends on the object category. We also observe some striking mistakes with small numbers. Our findings demonstrate that developing an intuitive visual understanding of number remains challenging for AI models and that merely increasing model size might not be a viable strategy to promote the emergence of systematic counting skills. We release the full code of our benchmark to facilitate the evaluation of enumeration skills in future AI systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI计数 视觉识别 AI模型能力 认知科学
相关文章