cs.AI updates on arXiv.org 15小时前
J6: Jacobian-Driven Role Attribution for Multi-Objective Prompt Optimization in LLMs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出J6模型,通过结构化雅可比矩阵分解,解决LLM多目标适应中梯度交互问题,实现冲突感知的优化,为多目标神经网络调整提供新途径。

arXiv:2508.12086v1 Announce Type: cross Abstract: In large language model (LLM) adaptation, balancing multiple optimization objectives such as improving factuality (heat) and increasing confidence (via low entropy) poses a fundamental challenge, especially when prompt parameters (e.g., hidden-layer insertions h and embedding modifications w) interact in non-trivial ways. Existing multi-objective optimization strategies often rely on scalar gradient aggregation, ignoring the deeper geometric structure between objectives and parameters. We propose J6, a structured Jacobian-based method that decomposes the gradient interaction matrix into six interpretable components. This decomposition enables both hard decision-making (e.g., choosing the dominant update direction via argmax) and soft strategies (e.g., attention-style weighting via softmax over J6), forming a dynamic update framework that adapts to local conflict and synergy. Moreover, the interpretable structure of J6 provides insight into parameter attribution, task interference, and geometry-aligned adaptation. Our work introduces a principled and extensible mechanism for conflict-aware prompt optimization, and opens a new avenue for incorporating structured Jacobian reasoning into multi-objective neural tuning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM适应 多目标优化 结构化雅可比矩阵
相关文章