MarkTechPost@AI 2024年10月17日
Google AI Researchers Propose ‘MODEL SWARMS’: A Collaborative Search Algorithm to Flexibly Adapt Diverse LLM Experts to Wide-Ranging Purposes
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

MODEL SWARMS是一种新颖的LLM适应方法,通过在权重空间中进行协同搜索来实现LLM的灵活适应。它借鉴了粒子群优化(PSO)的思想,将每个LLM专家视为一个粒子,并在权重空间中协同移动以优化代表适应目标的效用函数。该方法从一组多样化的LLM专家开始,通过引导它们在权重空间中的移动来优化它们的性能,这由个体和集体性能指标驱动。这种方法能够在没有监督微调的情况下实现高效的适应,使其适用于只有少量示例的低数据场景,例如200个示例。

😊 **MODEL SWARMS的结构和工作原理:** MODEL SWARMS框架采用独特的结构,其中LLM专家(称为粒子)具有确定的位置(权重配置)和速度(权重空间中的方向)。适应过程通过迭代调整每个专家的速度来进行,受到惯性、个人最佳(单个粒子的最佳性能)和全局最佳/最差性能(所有粒子中最佳/最差性能)的影响。这种设计有助于模型平衡探索和收敛。协同运动由效用函数控制,该函数可能涉及数据集性能或奖励模型,具体取决于适应目标,该函数有助于在模型中识别找到的最佳专家作为最终适应的模型。

🤩 **MODEL SWARMS的优势和应用:** 实验结果表明,MODEL SWARMS在各种LLM适应任务中取得了显著的改进,在12种基线模型组合方法中表现优于高达21%。研究表明,它在单任务适应和多任务领域都取得了优异的结果。具体而言,它在适应模型以进行单任务(如知识、推理和安全性)方面取得了显著成功,平均将模型性能提高了13.3%。对于医疗、法律和文化任务等领域的多任务设置,MODEL SWARMS表现出持续的性能提升,产生了能够同时优化多个目标的帕累托最优专家。这种方法也被证明对奖励模型适应和特定于人类兴趣的领域有效,突出了其灵活性。

🥳 **MODEL SWARMS的意义和未来展望:** MODEL SWARMS代表了在没有大量调整数据或限制性假设的情况下,高效灵活地适应LLM的重大进步。通过利用群体智能,这种方法允许LLM协同搜索最佳配置,从而在各种任务中提高性能。它在低数据适应至关重要的应用中具有前景,其多功能性有可能改变多种LLM用于各种动态需求的方式。

🤔 **MODEL SWARMS的潜在挑战:** 尽管MODEL SWARMS具有潜力,但仍有一些挑战需要解决。例如,如何有效地扩展该方法以处理大型LLM和复杂适应场景。此外,需要进一步研究如何为不同的任务和领域选择最佳的效用函数和参数。

🤯 **MODEL SWARMS的未来方向:** 未来,MODEL SWARMS可以扩展到更广泛的LLM适应任务,包括个性化、跨语言和多模态适应。此外,可以探索将该方法与其他适应技术(如迁移学习和元学习)相结合,以进一步提高其性能。

There is a need for flexible and efficient adaptation of large language models (LLMs) to various tasks. Existing approaches, such as mixture-of-experts (MoE) and model arithmetic, struggle with requiring substantial tuning data, inflexible model composition, or strong assumptions about how models should be used. These limitations call for a methodology that can adapt LLMs efficiently without extensive tuning or restrictive assumptions, especially in low-data settings.

Researchers from Google Cloud AI, Google DeepMind, and the University of Washington have proposed a new approach called MODEL SWARMS, which utilizes swarm intelligence to adapt LLMs through collaborative search in the weight space. Inspired by Particle Swarm Optimization (PSO), MODEL SWARMS treats each LLM expert as a particle that collaboratively moves in the weight space to optimize a utility function that represents the adaptation objective. The approach begins with a pool of diverse LLM experts and optimizes their performance by guiding their movement in the weight space, driven by individual and collective performance markers. This enables efficient adaptation without supervised fine-tuning, making it suitable for low-data contexts with as few as 200 examples.

The proposed MODEL SWARMS framework has a unique structure where LLM experts (referred to as particles) have a defined location (weight configuration) and velocity (direction in weight space). The adaptation process is carried out by iteratively adjusting each expert’s velocity, influenced by inertia, personal best (the best performance of an individual particle), and global best/worst performance (the best/worst performance among all particles). This design helps the model balance exploration and convergence. The collaborative movement is governed by a utility function that may involve dataset performance or reward models, depending on the adaptation target, and this function helps to identify the best-found expert among the models as the final adapted model.

Experimental results indicate that MODEL SWARMS delivers significant improvements across various LLM adaptation tasks, outperforming 12 baseline model composition approaches by up to 21%. The research demonstrated superior results for both single-task adaptation and multi-task domains. Specifically, it achieved notable success in adapting models for single tasks like knowledge, reasoning, and safety, improving model performance by 13.3% on average. For multi-task settings in domains such as medical, legal, and cultural tasks, MODEL SWARMS showed a consistent performance boost by producing Pareto-optimal experts capable of optimizing multiple objectives simultaneously. The approach also proved effective for reward model adaptation and human interest-specific domains, highlighting its flexibility.

In conclusion, MODEL SWARMS represents a significant advancement in adapting LLMs efficiently and flexibly without the need for extensive tuning data or restrictive assumptions. By leveraging swarm intelligence, this approach allows LLMs to collaboratively search for optimal configurations collaboratively, thereby improving performance across a wide range of tasks. It holds promise for applications where low-data adaptation is essential, and its versatility can potentially reshape the way multiple LLMs are utilized for diverse and dynamic requirements.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter.. Don’t Forget to join our 50k+ ML SubReddit.

[Upcoming Live Webinar- Oct 29, 2024] The Best Platform for Serving Fine-Tuned Models: Predibase Inference Engine (Promoted)

The post Google AI Researchers Propose ‘MODEL SWARMS’: A Collaborative Search Algorithm to Flexibly Adapt Diverse LLM Experts to Wide-Ranging Purposes appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MODEL SWARMS LLM适应 群体智能 协同搜索 低数据场景
相关文章