机器之心 03月20日
深度学习的平衡之道:港科大、港城大等团队联合发布多目标优化最新综述
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文是香港多所高校及UIUC团队联合发布的多目标深度学习综述,从多方面解析该领域,涵盖算法设计、理论分析、实际应用及挑战等内容,并开源了相关算法库。

多目标优化旨在协调多个潜在冲突目标,寻找Pareto最优解

基于梯度的多目标优化方法分为三类,各有代表性算法

从收敛性和泛化性进行理论分析,在多个应用中展现潜力

虽取得进展,但仍面临理论泛化分析不足等问题

开源了多目标深度学习的两大算法库

2025-03-18 15:35 北京

多目标优化最新综述,邀您共探发展新程


本文作者来自香港科技大学、香港科技大学(广州)、香港城市大学以及UIUC等机构。其中,港科大在读博士生陈巍昱、港城大在读博士生张霄远和港科广在读博士生林百炅为共同第一作者;林熙博士目前担任港城大博士后研究员;UIUC赵晗助理教授、港城大张青富教授以及港科大郭天佑教授为共同通讯作者。赵晗博士的研究方向主要集中在机器学习理论和可信机器学习领域,涵盖算法公平,可解释性和多任务优化等多个方向,其研究成果曾获Google Research Award。张青富教授 (IEEE Fellow) 长期致力于多目标优化的研究,所提出MOEA/D方法至今已被引用近万次,成为多目标优化经典范式之一。郭天佑教授 (IEEE Fellow) 专注于机器学习中的优化问题研究,曾获AI 2000最具影响力学者荣誉提名,并担任IJCAI-2025程序主席。


近年来,深度学习技术在自动驾驶、计算机视觉、自然语言处理和强化学习等领域取得了突破性进展。然而,在现实场景中,传统单目标优化范式在应对多任务协同优化、资源约束以及安全性 - 公平性权衡等复杂需求时,逐渐暴露出其方法论的局限性。值得注意的是,在大语言模型(LLM)与生成式 AI 系统的多维度价值对齐(Multi-Dimensional Alignment)领域,如何协调模型性能、安全伦理边界、文化适应性及能耗效率等多元目标,已成为制约人工智能系统社会应用的关键挑战。多目标优化(Multi-Objective Optimization, MOO)作为一种协调多个潜在冲突目标的核心技术框架,正在成为破解复杂系统多重约束难题的关键方法。


近日,由香港科技大学、香港科技大学(广州)、香港城市大学以及 UIUC 等团队联合发布的基于梯度的多目标深度学习综述论文《Gradient-Based Multi-Objective Deep Learning: Algorithms, Theories, Applications, and Beyond》正式上线。这篇综述从多目标算法设计、理论分析到实际应用与未来展望,全方位解析了如何在多任务场景下高效平衡各目标任务,呈现了这一领域的全景。



背景


在深度学习中,我们常常需要同时优化多个目标:



多目标优化算法旨在寻找一系列 折中解(也称为 Pareto 最优解),在不同目标间达到平衡,从而满足应用场景中对协同优化的要求。



算法设计


基于梯度的多目标优化方法主要分为三类:寻找单个 Pareto 最优解的算法,寻找有限个 Pareto 最优解的算法以及寻找无限个 Pareto 最优解的算法。



寻找单个 Pareto 最优解


在多任务学习等场景中,通常只需找到一个平衡的解,以解决任务之间的冲突,使每个任务的性能都尽可能达到最优。为此,研究者们提出了多种方法,这些方法可进一步分为损失平衡方法和梯度平衡方法。



一些有代表性的方法如下图所示:



寻找有限个 Pareto 最优解


在寻找有限个 Pareto 解集时,需要同时考虑两个关键因素:解的快速收敛性(确保解迅速逼近 Pareto 最优前沿)和解集的多样性(保证解在 Pareto 前沿上的均匀分布)。目前主要有两类方法:


    基于偏好向量的方法利用偏好向量来指定特定的 Pareto 解。通过均匀分布的偏好向量,可以生成具有多样性的 Pareto 解集,覆盖 Pareto 前沿的不同区域。

    无需偏好向量的方法通过优化 Pareto 解集的某个指标来提高解的多样性。例如,最大化超体积(Hypervolume),使解集在目标空间中覆盖更大的区域;或者最大化最小距离,确保解集中的解彼此远离,从而提升分布均匀性。由于该类方法无需指定偏好向量,因此具有更高的适应性和灵活性。


一些有代表性的方法如下图所示:



寻找无限个 Pareto 最优解 


为满足用户在任一偏好下都能获得合适解的需求,研究者设计了直接学习整个 Pareto 集的方法,主要包括:



在训练过程中,这些方法通常采用随机采样用户偏好,利用端到端的梯度下降优化映射网络参数,同时结合标量化目标或超体积最大化等策略,确保映射网络能够覆盖整个解集并实现稳定收敛。



理论分析


我们从收敛性和泛化性两个角度总结了现有的 MOO 的理论分析:





应用与挑战


基于梯度的多目标优化方法已在多个前沿应用中展现出巨大潜力,主要包括:



尽管多目标优化方法已取得诸多进展,但仍面临一些亟待解决的问题:比如:理论泛化分析不足, 计算开销与高效性问题, 高维目标与偏好采样挑战, 分布式训练与协同优化以及大语言模型的多目标优化


多目标算法库


我们开源了多目标深度学习领域的两大的算法库:LibMTL 和 LibMOON。


结语


本综述旨在为多目标深度学习领域提供一份全面的资源整合。我们系统地梳理了从算法设计、理论分析到实际应用的各个方面,并深入探讨了未来发展面临的挑战。无论您的研究重点是多任务学习、强化学习,还是大语言模型的训练与对齐,相信都能在本文中找到有价值的见解与启发。我们也认识到,当前的工作可能未能完整涵盖该领域的所有研究成果,如果你有任何建议或补充,欢迎访问我们的 GitHub 仓库,并提交 Issue 或 Pull Request,让我们携手推动这一领域的发展,共同进步!


© THE END 
转载请联系本公众号获得授权
投稿或寻求报道:liyazhou@jiqizhixin.com

阅读原文

跳转微信打开

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多目标优化 深度学习 算法设计 实际应用 算法库
相关文章