cs.AI updates on arXiv.org 07月10日 12:06
Comparative Analysis of CNN and Transformer Architectures with Heart Cycle Normalization for Automated Phonocardiogram Classification
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文对比四种心脏杂音检测模型,分析不同规范化方法对模型性能的影响,为临床应用提供指导。

arXiv:2507.07058v1 Announce Type: cross Abstract: The automated classification of phonocardiogram (PCG) recordings represents a substantial advancement in cardiovascular diagnostics. This paper presents a systematic comparison of four distinct models for heart murmur detection: two specialized convolutional neural networks (CNNs) and two zero-shot universal audio transformers (BEATs), evaluated using fixed-length and heart cycle normalization approaches. Utilizing the PhysioNet2022 dataset, a custom heart cycle normalization method tailored to individual cardiac rhythms is introduced. The findings indicate the following AUROC values: the CNN model with fixed-length windowing achieves 79.5%, the CNN model with heart cycle normalization scores 75.4%, the BEATs transformer with fixed-length windowing achieves 65.7%, and the BEATs transformer with heart cycle normalization results in 70.1%. The findings indicate that physiological signal constraints, especially those introduced by different normalization strategies, have a substantial impact on model performance. The research provides evidence-based guidelines for architecture selection in clinical settings, emphasizing the need for a balance between accuracy and computational efficiency. Although specialized CNNs demonstrate superior performance overall, the zero-shot transformer models may offer promising efficiency advantages during development, such as faster training and evaluation cycles, despite their lower classification accuracy. These findings highlight the potential of automated classification systems to enhance cardiac diagnostics and improve patient care.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PCG 心脏杂音检测 模型比较
相关文章