cs.AI updates on arXiv.org 07月15日 12:26
Enhancing ALS Progression Tracking with Semi-Supervised ALSFRS-R Scores Estimated from Ambient Home Health Monitoring
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本研究开发了一种基于半监督回归的模型,通过家庭传感器监测数据估计ALS患者功能衰退速率,比较了三种模型范式,发现针对不同功能领域的模型具有不同的同质性和异质性,为ALS功能衰退监测提供了新的思路。

arXiv:2507.09460v1 Announce Type: cross Abstract: Clinical monitoring of functional decline in ALS relies on periodic assessments that may miss critical changes occurring between visits. To address this gap, semi-supervised regression models were developed to estimate rates of decline in a case series cohort by targeting ALSFRS- R scale trajectories with continuous in-home sensor monitoring data. Our analysis compared three model paradigms (individual batch learning and cohort-level batch versus incremental fine-tuned transfer learning) across linear slope, cubic polynomial, and ensembled self-attention pseudo-label interpolations. Results revealed cohort homogeneity across functional domains responding to learning methods, with transfer learning improving prediction error for ALSFRS-R subscales in 28 of 32 contrasts (mean RMSE=0.20(0.04)), and individual batch learning for predicting the composite scale (mean RMSE=3.15(1.25)) in 2 of 3. Self-attention interpolation achieved the lowest prediction error for subscale-level models (mean RMSE=0.19(0.06)), capturing complex nonlinear progression patterns, outperforming linear and cubic interpolations in 20 of 32 contrasts, though linear interpolation proved more stable in all ALSFRS-R composite scale models (mean RMSE=0.23(0.10)). We identified distinct homogeneity-heterogeneity profiles across functional domains with respiratory and speech exhibiting patient-specific patterns benefiting from personalized incremental adaptation, while swallowing and dressing functions followed cohort-level trajectories suitable for transfer models. These findings suggest that matching learning and pseudo-labeling techniques to functional domain-specific homogeneity-heterogeneity profiles enhances predictive accuracy in ALS progression tracking. Integrating adaptive model selection within sensor monitoring platforms could enable timely interventions and scalable deployment in future multi-center studies.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

半监督回归 ALS功能衰退 模型比较 同质性-异质性 传感器监测
相关文章