arXiv:2508.12927v1 Announce Type: cross Abstract: Unsupervised anomaly detection aims to detect defective parts of a sample by having access, during training, to a set of normal, i.e. defect-free, data. It has many applications in fields, such as industrial inspection or medical imaging, where acquiring labels is costly or when we want to avoid introducing biases in the type of anomalies that can be spotted. In this work, we propose a novel UAD method based on prototype learning and introduce a metric to compare a structured set of embeddings that balances a feature-based cost and a spatial-based cost. We leverage this metric to learn local and global prototypes with optimal transport from latent representations extracted with a pre-trained image encoder. We demonstrate that our approach can enforce a structural constraint when learning the prototypes, allowing to capture the underlying organization of the normal samples, thus improving the detection of incoherencies in images. Our model achieves performance that is on par with strong baselines on two reference benchmarks for anomaly detection on industrial images. The code is available at https://github.com/robintrmbtt/pradot.