cs.AI updates on arXiv.org 14小时前
Randomized PCA Forest for Outlier Detection
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出基于随机主成分分析(RPCA)的异常检测方法,通过RPCA Forest实现,在多个数据集上优于传统及现有方法,具有高效性和泛化能力。

arXiv:2508.12776v1 Announce Type: cross Abstract: We propose a novel unsupervised outlier detection method based on Randomized Principal Component Analysis (PCA). Inspired by the performance of Randomized PCA (RPCA) Forest in approximate K-Nearest Neighbor (KNN) search, we develop a novel unsupervised outlier detection method that utilizes RPCA Forest for outlier detection. Experimental results showcase the superiority of the proposed approach compared to the classical and state-of-the-art methods in performing the outlier detection task on several datasets while performing competitively on the rest. The extensive analysis of the proposed method reflects it high generalization power and its computational efficiency, highlighting it as a good choice for unsupervised outlier detection.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RPCA Forest 无监督异常检测 随机主成分分析 数据集 泛化能力
相关文章