cs.AI updates on arXiv.org 6小时前
MetaOcc: Spatio-Temporal Fusion of Surround-View 4D Radar and Camera for 3D Occupancy Prediction with Dual Training Strategies
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MetaOcc,一种基于多视图4D雷达和图像的3D占用预测多模态框架,通过雷达高度自注意力模块和分层多尺度多模态融合策略,实现高精度预测,并采用半监督学习减少标注成本。

arXiv:2501.15384v2 Announce Type: replace-cross Abstract: Robust 3D occupancy prediction is essential for autonomous driving, particularly under adverse weather conditions where traditional vision-only systems struggle. While the fusion of surround-view 4D radar and cameras offers a promising low-cost solution, effectively extracting and integrating features from these heterogeneous sensors remains challenging. This paper introduces MetaOcc, a novel multi-modal framework for omnidirectional 3D occupancy prediction that leverages both multi-view 4D radar and images. To address the limitations of directly applying LiDAR-oriented encoders to sparse radar data, we propose a Radar Height Self-Attention module that enhances vertical spatial reasoning and feature extraction. Additionally, a Hierarchical Multi-scale Multi-modal Fusion strategy is developed to perform adaptive local-global fusion across modalities and time, mitigating spatio-temporal misalignments and enriching fused feature representations. To reduce reliance on expensive point cloud annotations, we further propose a pseudo-label generation pipeline based on an open-set segmentor. This enables a semi-supervised strategy that achieves 90% of the fully supervised performance using only 50% of the ground truth labels, offering an effective trade-off between annotation cost and accuracy. Extensive experiments demonstrate that MetaOcc under full supervision achieves state-of-the-art performance, outperforming previous methods by +0.47 SC IoU and +4.02 mIoU on the OmniHD-Scenes dataset, and by +1.16 SC IoU and +1.24 mIoU on the SurroundOcc-nuScenes dataset. These results demonstrate the scalability and robustness of MetaOcc across sensor domains and training conditions, paving the way for practical deployment in real-world autonomous systems. Code and data are available at https://github.com/LucasYang567/MetaOcc.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

3D占用预测 多模态框架 半监督学习
相关文章