cs.AI updates on arXiv.org 3小时前
Engineered over Emergent Communication in MARL for Scalable and Sample-Efficient Cooperative Task Allocation in a Partially Observable Grid
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文比较了在合作多智能体强化学习环境中,学习策略与工程策略在通信策略上的有效性。通过引入学习直接通信(LDC)和意图通信两种策略,并对其在合作任务中的成功率进行评估,发现工程化策略在复杂环境中表现出更优的性能和可扩展性。

arXiv:2508.02912v1 Announce Type: cross Abstract: We compare the efficacy of learned versus engineered communication strategies in a cooperative multi-agent reinforcement learning (MARL) environment. For the learned approach, we introduce Learned Direct Communication (LDC), where agents generate messages and actions concurrently via a neural network. Our engineered approach, Intention Communication, employs an Imagined Trajectory Generation Module (ITGM) and a Message Generation Network (MGN) to formulate messages based on predicted future states. Both strategies are evaluated on their success rates in cooperative tasks under fully and partially observable conditions. Our findings indicate that while emergent communication is viable, the engineered approach demonstrates superior performance and scalability, particularly as environmental complexity increases.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多智能体强化学习 通信策略 效能对比
相关文章