MarkTechPost@AI 2024年09月07日
Scalable Multi-Agent Reinforcement Learning Framework for Efficient Decision-Making in Large-Scale Systems
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种可扩展的多智能体强化学习框架,该框架利用局部信息进行全局评估,并通过模型学习来优化策略。该框架在处理数百个智能体的复杂系统时,能够有效降低通信成本和数据需求,同时保持高性能,为大规模系统的决策制定提供了新的解决方案。

🤖 该框架通过将全局动态解耦为局部信息,利用局部观察进行全局信息估计,从而提高了在大型系统中进行决策制定的效率。 该框架的独特之处在于它采用了局部信息来估计全局信息。通过将全局动态解耦为局部信息,每个智能体都可以基于其局部观察来估计全局状态。这种方法有效地减少了对全局信息的需求,从而降低了通信成本和数据需求。 例如,在交通控制系统中,每个智能体(例如交通信号灯)可以根据其局部交通流量来估计全局交通状况,而不必依赖于所有交通信号灯的全局信息。这使得该框架能够有效地处理数百个智能体的复杂系统。

🧠 该框架采用基于模型的策略优化,通过模型学习来提升决策效率和可扩展性。 该框架的核心是基于模型的策略优化,通过模型学习来提高决策效率。每个智能体维护一个局部模型,该模型通过观察其自身的行为和邻居的状态来预测未来的状态和奖励。 该模型学习方法可以有效地减少对环境数据的依赖,从而提高了决策效率和可扩展性。例如,在电力系统中,每个智能体(例如发电机)可以通过模型学习来预测未来电力需求,并根据预测结果来调整发电量,从而提高电力系统的稳定性和效率。

💪 该框架在各种大规模场景中表现出色,包括交通控制、电力系统和疫情防控。 该框架在各种大规模场景中都取得了优异的性能,包括交通控制、电力系统和疫情防控。例如,在交通控制系统中,该框架可以有效地协调数百个交通信号灯,以优化交通流量,减少拥堵。 在电力系统中,该框架可以有效地协调数百个发电机,以确保电力系统的稳定性和效率。在疫情防控中,该框架可以有效地协调数百个医疗机构,以优化资源分配,控制疫情蔓延。

📈 该框架在通信成本和样本效率方面超越了现有的方法,展示了其在实际应用中的潜力。 与传统的集中式方法相比,该框架在通信成本和样本效率方面都取得了显著的提升。例如,在交通控制系统中,该框架的通信成本比集中式方法低 5% 到 35%,同时还提高了收敛速度和样本效率。 该框架的出色性能表明其在实际应用中的巨大潜力,例如在交通管理、能源管理和疫情防控等领域。

📊 该框架的优点是能够有效地处理大型系统,并具有较低的通信成本和数据需求。 该框架的主要优点是能够有效地处理大型系统,并具有较低的通信成本和数据需求。这使得该框架能够在现实世界中应用于各种大型系统,例如交通系统、电力系统和医疗保健系统。 此外,该框架还具有较高的样本效率,这意味着它需要较少的数据来训练模型,从而降低了训练成本和时间。

🎯 该框架的局限性是可能难以处理具有复杂交互的系统,以及可能需要大量的计算资源来训练模型。 该框架的局限性在于它可能难以处理具有复杂交互的系统。例如,在一些系统中,智能体之间的交互可能非常复杂,难以用简单的模型来描述。 此外,该框架可能需要大量的计算资源来训练模型。这对于一些大型系统来说可能是一个挑战。

💡 该框架为大规模系统的决策制定提供了新的解决方案,并具有广泛的应用前景。 该框架为大规模系统的决策制定提供了新的解决方案,并具有广泛的应用前景。例如,该框架可以用于优化交通流量、提高电力系统效率、控制疫情蔓延、管理资源分配等等。 随着人工智能技术的不断发展,该框架有望在未来发挥更重要的作用,并为解决各种实际问题提供更有效的解决方案。

🌐 该框架通过局部信息来估计全局信息,并通过模型学习来优化策略,这是一种新的思路,为大规模系统的决策制定提供了新的解决方案。 该框架的创新之处在于它将局部信息与模型学习相结合,以提高决策效率和可扩展性。这是一种新的思路,为大规模系统的决策制定提供了新的解决方案。

✨ 该框架的应用前景非常广泛,可以用于各种大型系统,例如交通系统、电力系统、医疗保健系统等等。 该框架的应用前景非常广泛,可以用于各种大型系统,例如交通系统、电力系统、医疗保健系统等等。 随着人工智能技术的不断发展,该框架有望在未来发挥更重要的作用,并为解决各种实际问题提供更有效的解决方案。

The primary challenge in scaling large-scale AI systems is achieving efficient decision-making while maintaining performance. Distributed AI, particularly multi-agent reinforcement learning (MARL), offers potential by decomposing complex tasks and distributing them across collaborative nodes. However, real-world applications face limitations due to high communication and data requirements. Traditional methods, like model predictive control (MPC), require precise system dynamics and often oversimplify nonlinear complexities. While promising in areas like autonomous driving and power systems, MARL still struggles with efficient information exchange and scalability in complex, real-world environments due to communication constraints and impractical assumptions.

Peking University and King’s College London researchers developed a decentralized policy optimization framework for multi-agent systems. By leveraging local observations through topological decoupling of global dynamics, they enable accurate estimations of international information. Their approach integrates model learning to enhance policy optimization with limited data. Unlike previous methods, this framework improves scalability by reducing communication and system complexity. Empirical results across diverse scenarios, including transportation and power systems, demonstrate its effectiveness in handling large-scale systems with hundreds of agents. It offers superior performance in real-world applications with limited communication and heterogeneous agents.

In the decentralized model-based policy optimization framework, each agent maintains localized models that predict future states and rewards by observing its actions and the states of its neighbors. Policies are optimized using two experience buffers: one for real environment data and another for model-generated data. A branched rollout technique is used to prevent compounding errors by starting model rollouts from random states within recent trajectories to improve accuracy. Policy updates incorporate localized value functions and leverage PPO agents, guaranteeing policy improvement by gradually minimizing approximation and dependency biases during training.

The Methods outline a networked Markov Decision Process (MDP) with multiple agents represented as nodes in a graph. Each agent communicates with neighbors to optimize a decentralized reinforcement learning policy to improve local rewards and global system performance. Two system types are discussed: Independent Networked Systems (INS), where agent interactions are minimal and ξ-dependent systems, which account for diminishing influence with distance. A model-based learning approach approximates system dynamics, ensuring monotonic policy improvements. This method is tested in large-scale scenarios like traffic control and power grids, focusing on decentralized agent control for optimal performance.

The study demonstrates the superior performance of a decentralized MARL framework, tested in both simulators and real-world systems. Compared to centralized baselines like MAG and CPPO, the approach significantly reduces communication costs (5-35%) while improving convergence and sample efficiency. The method performed well across control tasks, such as vehicle and traffic signal management, pandemic network control, and power grid operations, consistently outperforming baselines. Shorter rollout lengths and optimized neighbor selection enhanced model predictions and training outcomes. These results highlight the framework’s scalability and effectiveness in managing large-scale, complex systems.


In conclusion, the study presents a scalable MARL framework effective for managing large systems with hundreds of agents, surpassing the capabilities of previous decentralized methods. The approach leverages minimal information exchange to assess global conditions, akin to the six degrees of separation theory. It integrates model-based decentralized policy optimization, which improves decision-making efficiency and scalability by reducing communication and data needs. By focusing on local observations and refining policies through model learning, the framework maintains high performance even as the system size grows. The results highlight its potential for advanced traffic, energy, and pandemic management applications.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and LinkedIn. Join our Telegram Channel.

If you like our work, you will love our newsletter..

Don’t Forget to join our 50k+ ML SubReddit

The post Scalable Multi-Agent Reinforcement Learning Framework for Efficient Decision-Making in Large-Scale Systems appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多智能体强化学习 决策制定 大规模系统 模型学习 局部信息 通信成本 样本效率
相关文章