cs.AI updates on arXiv.org 3小时前
A Multi-Agent System for Complex Reasoning in Radiology Visual Question Answering
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种针对放射学视觉问答(RVQA)的多智能体系统,旨在提高事实准确性,减少幻觉和跨模态错配。通过实验验证,该系统在处理复杂推理任务时优于现有多模态大型语言模型(MLLMs),并展现了其在临床AI应用中的潜力。

arXiv:2508.02841v1 Announce Type: new Abstract: Radiology visual question answering (RVQA) provides precise answers to questions about chest X-ray images, alleviating radiologists' workload. While recent methods based on multimodal large language models (MLLMs) and retrieval-augmented generation (RAG) have shown promising progress in RVQA, they still face challenges in factual accuracy, hallucinations, and cross-modal misalignment. We introduce a multi-agent system (MAS) designed to support complex reasoning in RVQA, with specialized agents for context understanding, multimodal reasoning, and answer validation. We evaluate our system on a challenging RVQA set curated via model disagreement filtering, comprising consistently hard cases across multiple MLLMs. Extensive experiments demonstrate the superiority and effectiveness of our system over strong MLLM baselines, with a case study illustrating its reliability and interpretability. This work highlights the potential of multi-agent approaches to support explainable and trustworthy clinical AI applications that require complex reasoning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

放射学视觉问答 多智能体系统 医学图像处理 临床AI
相关文章