2024-07-06 00:01 湖北
LlamaIndex CEO于2024.6.26在AI Engineer上的主题演讲:
报告人:Jerry Liu
报告人信息:LlamaIndex CEO
报告主题:“知识助手的尽头是Multi-Agents!”
主题原文:“The Future of Knowledge Assistants”
报告概要内容如下:
知识助手(Knowledge Assistants)的终极形态是多智能体系统,它通过RAG技术起步,逐渐发展出高级Agent能力,最终实现Multi-Agent协同工作,以提供更高效、智能的服务。一些关键点:
知识助手的演进:为了超越简单的搜索和问答,知识助手需要发展更高级的数据和检索模块、单智能体查询流程,以及多智能体任务解决者。
数据的重要性:高质量的数据是构建有效知识助手的关键。数据解析、分块和索引等数据处理步骤对于减少错误和提高性能至关重要。
基础RAG的局限性:检索增强生成(RAG)作为知识助手的起点,提供了基础的数据索引和简单的问答功能。然而,它在理解复杂查询、规划任务和使用工具方面存在局限。
单智能体的高级流程:通过引入工具使用、动态规划与执行、对话记忆等元素,单智能体可以处理更复杂的任务,但可能伴随着更高的成本和延迟。
Agentic RAG:将数据接口视为工具,利用智能体的推理循环来解决复杂任务,构建能够处理复杂问题的个性化问答系统。
Multi-Agents的优势:多智能体系统通过专业化、并行化处理任务,优化成本和延迟,但同时也带来了服务架构和协调的挑战。
Llama Agents的架构:将每个智能体视为独立的服务,通过消息队列进行通信,并通过控制平面进行编排,实现了封装性、模块性和标准化API接口。
Llama Agents的推出:Llama Agents作为微服务的智能体,提供了易于部署、可扩展性和资源管理的优势,并且已经以Alpha预览模式发布。
LlamaCloud的开放:LlamaCloud作为一个提供高级非结构化数据处理的平台,为LLMs提供了更强大的支持,并且已经开放了等待名单。
未来展望:知识助手的未来将朝着更智能、更灵活、更高效的方向发展,通过单智能体和多智能体的协同工作,能够解决更广泛的任务和问题。
演讲报告详情:
推荐阅读
• 对齐LLM偏好的直接偏好优化方法:DPO、IPO、KTO
• RAG全景图:从RAG启蒙到高级RAG之36技,再到终章Agentic RAG!
• Agent到多模态Agent再到多模态Multi-Agents系统的发展与案例讲解(1.2万字,20+文献,27张图)
欢迎关注我的公众号“PaperAgent”,每天一篇大模型(LLM)文章来锻炼我们的思维,简单的例子,不简单的方法,提升自己。