cs.AI updates on arXiv.org 前天 19:09
Parameter-Efficient Routed Fine-Tuning: Mixture-of-Experts Demands Mixture of Adaptation Modules
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨将动态路由机制融入MoE模型的参数高效微调策略,通过实验验证了该策略在常识和数学推理任务中的性能和效率,并为不同场景提供了最优配置和实证分析。

arXiv:2508.02587v1 Announce Type: cross Abstract: Mixture-of-Experts (MoE) benefits from a dynamic routing mechanism among their specialized experts, which existing Parameter- Efficient Fine-Tuning (PEFT) strategies fail to leverage. This motivates us to investigate whether adaptation modules themselves should incorporate routing mechanisms to align with MoE's multi-expert architecture. We analyze dynamics of core components when applying PEFT to MoE language models and examine how different routing strategies affect adaptation effectiveness. Extensive experiments adapting OLMoE-1B-7B and Mixtral-8x7B on various commonsense and math reasoning tasks validate the performance and efficiency of our routed approach. We identify the optimal configurations for different scenarios and provide empirical analyses with practical insights to facilitate better PEFT and MoE applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MoE模型 参数高效微调 动态路由 微调策略 实验验证
相关文章