cs.AI updates on arXiv.org 08月01日 12:08
Semantic Chain-of-Trust: Autonomous Trust Orchestration for Collaborator Selection via Hypergraph-Aided Agentic AI
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于语义链信任编排的自主信任评估方法,通过代理AI和超图技术,在协作系统中实现高效信任评估,提高资源利用率。

arXiv:2507.23565v1 Announce Type: new Abstract: In collaborative systems, the effective completion of tasks hinges on task-specific trust evaluations of potential devices for distributed collaboration. However, the complexity of tasks, the spatiotemporal dynamism of distributed device resources, and the inevitable assessment overhead dramatically increase the complexity and resource consumption of the trust evaluation process. As a result, ill-timed or overly frequent trust evaluations can reduce utilization rate of constrained resources, negatively affecting collaborative task execution. To address this challenge, this paper proposes an autonomous trust orchestration method based on a new concept of semantic chain-of-trust. Our technique employs agentic AI and hypergraph to establish and maintain trust relationships among devices. By leveraging its strengths in autonomous perception, task decomposition, and semantic reasoning, we propose agentic AI to perceive device states and autonomously perform trust evaluations of collaborators based on historical performance data only during device idle periods, thereby enabling efficient utilization of distributed resources. In addition, agentic AI performs task-specific trust evaluations on collaborator resources by analyzing the alignment between resource capabilities and task requirements. Moreover, by maintaining a trust hypergraph embedded with trust semantics for each device, agentic AI enables hierarchical management of collaborators and identifies collaborators requiring trust evaluation based on trust semantics, thereby achieving a balance between overhead and trust accuracy. Furthermore, local trust hypergraphs from multiple devices can be chained together to support multi-hop collaboration, enabling efficient coordination in large-scale systems. Experimental results demonstrate that the proposed method achieves resource-efficient trust evaluation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

信任评估 协作系统 代理AI 超图技术 资源利用率
相关文章