arXiv:2411.01866v2 Announce Type: replace-cross Abstract: When interacting with each other, humans adjust their behavior based on perceived trust. To achieve similar adaptability, robots must accurately estimate human trust at sufficiently granular timescales while collaborating with humans. Beta reputation is a popular way to formalize a mathematical estimation of human trust. However, it relies on binary performance, which updates trust estimations only after each task concludes. Additionally, manually crafting a reward function is the usual method of building a performance indicator, which is labor-intensive and time-consuming. These limitations prevent efficient capture of continuous trust changes at more granular timescales throughout the collaboration task. Therefore, this paper presents a new framework for the estimation of human trust using beta reputation at fine-grained timescales. To achieve granularity in beta reputation, we utilize continuous reward values to update trust estimates at each timestep of a task. We construct a continuous reward function using maximum entropy optimization to eliminate the need for the laborious specification of a performance indicator. The proposed framework improves trust estimations by increasing accuracy, eliminating the need to manually craft a reward function, and advancing toward the development of more intelligent robots.