cs.AI updates on arXiv.org 07月29日 12:22
A Theory of $\theta$-Expectations
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了针对非凸几何的识别性随机微积分数学框架,引入θ-BSDE,证明了其在非退化条件下的一致性和与全非线性偏微分方程的联系。

arXiv:2507.20353v1 Announce Type: cross Abstract: The canonical theory of stochastic calculus under ambiguity, founded on sub-additivity, is insensitive to non-convex uncertainty structures, leading to an identifiability impasse. This paper develops a mathematical framework for an identifiable calculus sensitive to non-convex geometry. We introduce the $\theta$-BSDE, a class of backward stochastic differential equations where the driver is determined by a pointwise maximization over a primitive, possibly non-convex, uncertainty set. The system's tractability is predicated not on convexity, but on a global analytic hypothesis: the existence of a unique and globally Lipschitz maximizer map for the driver function. Under this hypothesis, which carves out a tractable class of models, we establish well-posedness via a fixed-point argument. For a distinct, geometrically regular class of models, we prove a result of independent interest: under non-degeneracy conditions from Malliavin calculus, the maximizer is unique along any solution path, ensuring the model's internal consistency. We clarify the fundamental logical gap between this pathwise property and the global regularity required by our existence proof. The resulting valuation operator defines a dynamically consistent expectation, and we establish its connection to fully nonlinear PDEs via a Feynman-Kac formula.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

随机微积分 非凸几何 θ-BSDE 识别性 偏微分方程
相关文章