cs.AI updates on arXiv.org 07月29日 12:22
Dimer-Enhanced Optimization: A First-Order Approach to Escaping Saddle Points in Neural Network Training
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Dimer-Enhanced Optimization(DEO)框架,利用Dimer方法高效估计曲率,辅助神经网络训练避开鞍点和平坦区域,提升训练效率。

arXiv:2507.19968v1 Announce Type: cross Abstract: First-order optimization methods, such as SGD and Adam, are widely used for training large-scale deep neural networks due to their computational efficiency and robust performance. However, relying solely on gradient information, these methods often struggle to navigate complex loss landscapes with flat regions, plateaus, and saddle points. Second-order methods, which use curvature information from the Hessian matrix, can address these challenges but are computationally infeasible for large models. The Dimer method, a first-order technique that constructs two closely spaced points to probe the local geometry of a potential energy surface, efficiently estimates curvature using only gradient information. Inspired by its use in molecular dynamics simulations for locating saddle points, we propose Dimer-Enhanced Optimization (DEO), a novel framework to escape saddle points in neural network training. DEO adapts the Dimer method to explore a broader region of the loss landscape, approximating the Hessian's smallest eigenvector without computing the full matrix. By periodically projecting the gradient onto the subspace orthogonal to the minimum curvature direction, DEO guides the optimizer away from saddle points and flat regions, enhancing training efficiency with non-stepwise updates. Preliminary experiments on a Transformer toy model show DEO achieves competitive performance compared to standard first-order methods, improving navigation of complex loss landscapes. Our work repurposes physics-inspired, first-order curvature estimation to enhance neural network training in high-dimensional spaces.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络优化 Dimer方法 损失地形导航
相关文章