cs.AI updates on arXiv.org 15小时前
Online Training and Pruning of Deep Reinforcement Learning Networks
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合训练与剪枝的RL算法,针对OFENet进行网络优化,实现性能提升和资源节约。

arXiv:2507.11975v1 Announce Type: cross Abstract: Scaling deep neural networks (NN) of reinforcement learning (RL) algorithms has been shown to enhance performance when feature extraction networks are used but the gained performance comes at the significant expense of increased computational and memory complexity. Neural network pruning methods have successfully addressed this challenge in supervised learning. However, their application to RL is underexplored. We propose an approach to integrate simultaneous training and pruning within advanced RL methods, in particular to RL algorithms enhanced by the Online Feature Extractor Network (OFENet). Our networks (XiNet) are trained to solve stochastic optimization problems over the RL networks' weights and the parameters of variational Bernoulli distributions for 0/1 Random Variables $\xi$ scaling each unit in the networks. The stochastic problem formulation induces regularization terms that promote convergence of the variational parameters to 0 when a unit contributes little to the performance. In this case, the corresponding structure is rendered permanently inactive and pruned from its network. We propose a cost-aware, sparsity-promoting regularization scheme, tailored to the DenseNet architecture of OFENets expressing the parameter complexity of involved networks in terms of the parameters of the RVs in these networks. Then, when matching this cost with the regularization terms, the many hyperparameters associated with them are automatically selected, effectively combining the RL objectives and network compression. We evaluate our method on continuous control benchmarks (MuJoCo) and the Soft Actor-Critic RL agent, demonstrating that OFENets can be pruned considerably with minimal loss in performance. Furthermore, our results confirm that pruning large networks during training produces more efficient and higher performing RL agents rather than training smaller networks from scratch.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

XiNet RL网络剪枝 OFENet 神经网络优化
相关文章