cs.AI updates on arXiv.org 07月29日 12:21
Multi-Agent Reinforcement Learning for Dynamic Mobility Resource Allocation with Hierarchical Adaptive Grouping
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为HAG-PS的多智能体强化学习方法,用于动态交通资源分配,旨在解决动态和自适应共享分配策略以及记忆高效参数共享的挑战,并通过真实世界数据验证了其优越性能。

arXiv:2507.20377v1 Announce Type: new Abstract: Allocating mobility resources (e.g., shared bikes/e-scooters, ride-sharing vehicles) is crucial for rebalancing the mobility demand and supply in the urban environments. We propose in this work a novel multi-agent reinforcement learning named Hierarchical Adaptive Grouping-based Parameter Sharing (HAG-PS) for dynamic mobility resource allocation. HAG-PS aims to address two important research challenges regarding multi-agent reinforcement learning for mobility resource allocation: (1) how to dynamically and adaptively share the mobility resource allocation policy (i.e., how to distribute mobility resources) across agents (i.e., representing the regional coordinators of mobility resources); and (2) how to achieve memory-efficient parameter sharing in an urban-scale setting. To address the above challenges, we have provided following novel designs within HAG-PS. To enable dynamic and adaptive parameter sharing, we have designed a hierarchical approach that consists of global and local information of the mobility resource states (e.g., distribution of mobility resources). We have developed an adaptive agent grouping approach in order to split or merge the groups of agents based on their relative closeness of encoded trajectories (i.e., states, actions, and rewards). We have designed a learnable identity (ID) embeddings to enable agent specialization beyond simple parameter copy. We have performed extensive experimental studies based on real-world NYC bike sharing data (a total of more than 1.2 million trips), and demonstrated the superior performance (e.g., improved bike availability) of HAG-PS compared with other baseline approaches.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

交通资源分配 多智能体强化学习 HAG-PS
相关文章