cs.AI updates on arXiv.org 07月22日 12:44
Towards Explainable Anomaly Detection in Shared Mobility Systems
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合多源数据的共享出行异常检测框架,采用Isolation Forest算法进行无监督异常检测,并通过DIFFI算法实现可解释性。研究结果为优化共享出行运营决策提供了依据。

arXiv:2507.15643v1 Announce Type: cross Abstract: Shared mobility systems, such as bike-sharing networks, play a crucial role in urban transportation. Identifying anomalies in these systems is essential for optimizing operations, improving service reliability, and enhancing user experience. This paper presents an interpretable anomaly detection framework that integrates multi-source data, including bike-sharing trip records, weather conditions, and public transit availability. The Isolation Forest algorithm is employed for unsupervised anomaly detection, along with the Depth-based Isolation Forest Feature Importance (DIFFI) algorithm providing interpretability. Results show that station-level analysis offers a robust understanding of anomalies, highlighting the influence of external factors such as adverse weather and limited transit availability. Our findings contribute to improving decision-making in shared mobility operations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

共享出行 异常检测 多源数据 Isolation Forest DIFFI算法
相关文章