MarkTechPost@AI 2024年05月14日
Enhancing Anomaly Detection with Adaptive Noise: A Pseudo Anomaly Approach
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Anomaly detection has gained traction in various fields such as surveillance, medical analysis, and network security. Typically approached as a one-class classification problem, autoencoder (AE) models are commonly used. However, AEs tend to reconstruct anomalies too well, reducing discrimination between normal and abnormal data. Memory-based networks and pseudo anomalies have been proposed to address this but with limitations. 

The introduction of memory mechanisms into AE models aims to limit their reconstruction capability of anomalies. However, this approach may inadvertently affect normal data reconstructions. Another strategy involves generating pseudo anomalies, either by maximizing or minimizing reconstruction loss. Previous methods rely on strong inductive bias or hand-crafted augmentation techniques.

Researchers proposed a method that involves creating pseudo anomalies by incorporating adaptive noise into normal data. This is achieved by training another network to generate noise based on normal input, which is then added to the input to create pseudo anomalies. By training an AE to poorly reconstruct these pseudo anomalies, the reconstruction boundary evolves, improving anomaly detection. Unlike methods with strong inductive bias, this approach is generic and applicable across diverse domains, as demonstrated across various datasets.

Their method aims to enhance anomaly detection by training an AE to reconstruct normal input well while poorly reconstructing anomalies, achieved by incorporating learned adaptive noise into the normal data. This noise, generated by another autoencoder, creates pseudo anomalies, which are reconstructed poorly by the AE. The training process ensures that the AE evolves its reconstruction boundary towards improved anomaly detection. Unlike methods with strong inductive bias, this approach is generic and applicable across various domains. During testing, anomaly scores are computed based on reconstruction error, offering efficient inference without additional computational cost.

Starting with the definition of datasets and evaluation criteria. Researchers evaluated their method across diverse datasets, including surveillance videos (Ped2, Avenue, ShanghaiTech), CIFAR-10 images, and the KDDCUP99 network intrusion dataset. They preprocess inputs accordingly and set up hyperparameters using Adam optimizer. Their approach is compared extensively with baselines and state-of-the-art methods, showcasing its effectiveness and generic applicability.

Summary


Check out the PaperAll credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our 42k+ ML SubReddit

The post Enhancing Anomaly Detection with Adaptive Noise: A Pseudo Anomaly Approach appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章