cs.AI updates on arXiv.org 07月22日 12:34
Doing More with Less: A Survey on Routing Strategies for Resource Optimisation in Large Language Model-Based Systems
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了LLM系统中的路由策略,包括何时、如何以及为何将路由集成到LLM管道中以提高效率和性能,并讨论了优化成本最小化和性能最大化的目标。

arXiv:2502.00409v3 Announce Type: replace Abstract: Large Language Model (LLM)-based systems, i.e. interconnected elements that include an LLM as a central component, such as conversational agents, are usually designed with monolithic, static architectures that rely on a single, general-purpose LLM to handle all user queries. However, these systems may be inefficient as different queries may require different levels of reasoning, domain knowledge or pre-processing. While generalist LLMs (e.g. GPT-4o, Claude-Sonnet) perform well across a wide range of tasks, they may incur significant financial, energy and computational costs. These costs may be disproportionate for simpler queries, resulting in unnecessary resource utilisation. A routing mechanism can therefore be employed to route queries to more appropriate components, such as smaller or specialised models, thereby improving efficiency and optimising resource consumption. This survey aims to provide a comprehensive overview of routing strategies in LLM-based systems. Specifically, it reviews when, why, and how routing should be integrated into LLM pipelines to improve efficiency, scalability, and performance. We define the objectives to optimise, such as cost minimisation and performance maximisation, and discuss the timing of routing within the LLM workflow, whether it occurs before or after generation. We also detail the various implementation strategies, including similarity-based, supervised, reinforcement learning-based, and generative methods. Practical considerations such as industrial applications and current limitations are also examined, like standardising routing experiments, accounting for non-financial costs, and designing adaptive strategies. By formalising routing as a performance-cost optimisation problem, this survey provides tools and directions to guide future research and development of adaptive low-cost LLM-based systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM系统 路由策略 效率优化
相关文章