cs.AI updates on arXiv.org 07月21日 12:06
Single- to multi-fidelity history-dependent learning with uncertainty quantification and disentanglement: application to data-driven constitutive modeling
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出了一种数据驱动学习方法,用于处理多保真度历史依赖数据,量化认知不确定性并从中解耦数据噪声。方法适用于多种学习场景,并在多个数据驱动模型中表现优异,有助于预测响应、量化模型误差并发现噪声分布。

arXiv:2507.13416v1 Announce Type: cross Abstract: Data-driven learning is generalized to consider history-dependent multi-fidelity data, while quantifying epistemic uncertainty and disentangling it from data noise (aleatoric uncertainty). This generalization is hierarchical and adapts to different learning scenarios: from training the simplest single-fidelity deterministic neural networks up to the proposed multi-fidelity variance estimation Bayesian recurrent neural networks. The versatility and generality of the proposed methodology are demonstrated by applying it to different data-driven constitutive modeling scenarios that include multiple fidelities with and without aleatoric uncertainty (noise). The method accurately predicts the response and quantifies model error while also discovering the noise distribution (when present). This opens opportunities for future real-world applications in diverse scientific and engineering domains; especially, the most challenging cases involving design and analysis under uncertainty.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据驱动学习 不确定性量化 多保真度数据
相关文章