cs.AI updates on arXiv.org 07月08日 14:58
Disentangling Doubt in Deep Causal AI
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于深度双网络模型的因子化蒙特卡洛Dropout框架,用于高价值应用中的个体治疗效果估计,实现可靠预测和可解释的不确定性量化。

arXiv:2507.03622v1 Announce Type: cross Abstract: Accurate individual treatment-effect estimation in high-stakes applications demands both reliable point predictions and interpretable uncertainty quantification. We propose a factorized Monte Carlo Dropout framework for deep twin-network models that splits total predictive variance into representation uncertainty (sigma_rep) in the shared encoder and prediction uncertainty (sigma_pred) in the outcome heads. Across three synthetic covariate-shift regimes, our intervals are well-calibrated (ECE < 0.03) and satisfy sigma_rep^2 + sigma_pred^2 ~ sigma_tot^2. Additionally, we observe a crossover: head uncertainty leads on in-distribution data, but representation uncertainty dominates under shift. Finally, on a real-world twins cohort with induced multivariate shifts, only sigma_rep spikes on out-of-distribution samples (delta sigma ~ 0.0002) and becomes the primary error predictor (rho_rep <= 0.89), while sigma_pred remains flat. This module-level decomposition offers a practical diagnostic for detecting and interpreting uncertainty sources in deep causal-effect models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 不确定性量化 治疗效果估计
相关文章