cs.AI updates on arXiv.org 07月08日 13:54
The Joys of Categorical Conformal Prediction
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过范畴论方法探讨正则预测的不确定性量化,揭示其本质属性,并展示其与贝叶斯、频率主义和模糊概率方法的联系,同时指出正则预测区域与隐私保护的关系。

arXiv:2507.04441v1 Announce Type: cross Abstract: Conformal prediction (CP) is an Uncertainty Representation technique that delivers finite-sample calibrated prediction regions for any underlying Machine Learning model, yet its status as an Uncertainty Quantification (UQ) tool has remained conceptually opaque. We adopt a category-theoretic approach to CP -- framing it as a morphism, embedded in a commuting diagram, of two newly-defined categories -- that brings us three joys. First, we show that -- under minimal assumptions -- CP is intrinsically a UQ mechanism, that is, its UQ capabilities are a structural feature of the method. Second, we demonstrate that CP bridges (and perhaps subsumes) the Bayesian, frequentist, and imprecise probabilistic approaches to predictive statistical reasoning. Finally, we show that a conformal prediction region (CPR) is the image of a covariant functor. This observation is relevant to AI privacy: It implies that privacy noise added locally does not break coverage.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

正则预测 不确定性量化 范畴论 隐私保护 机器学习
相关文章