cs.AI updates on arXiv.org 07月21日 12:06
Generalist Bimanual Manipulation via Foundation Video Diffusion Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为VIDAR的机器人操作框架,利用大规模视频预训练和新型掩码逆动力学模型进行动作预测,有效提升机器人操作的通用性和可扩展性。

arXiv:2507.12898v1 Announce Type: cross Abstract: Bimanual robotic manipulation, which involves the coordinated control of two robotic arms, is foundational for solving challenging tasks. Despite recent progress in general-purpose manipulation, data scarcity and embodiment heterogeneity remain serious obstacles to further scaling up in bimanual settings. In this paper, we introduce VIdeo Diffusion for Action Reasoning (VIDAR), a two-stage framework that leverages large-scale, diffusion-based video pre-training and a novel masked inverse dynamics model for action prediction. We pre-train the video diffusion model on 750K multi-view videos from three real-world bimanual robot platforms, utilizing a unified observation space that encodes robot, camera, task, and scene contexts. Our masked inverse dynamics model learns masks to extract action-relevant information from generated trajectories without requiring pixel-level labels, and the masks can effectively generalize to unseen backgrounds. Our experiments demonstrate that with only 20 minutes of human demonstrations on an unseen robot platform (only 1% of typical data requirements), VIDAR generalizes to unseen tasks and backgrounds with strong semantic understanding, surpassing state-of-the-art methods. Our findings highlight the potential of video foundation models, coupled with masked action prediction, to enable scalable and generalizable robotic manipulation in diverse real-world settings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

VIDAR 视频扩散 动作推理 机器人操作 逆动力学模型
相关文章