报告主题:双臂机器人扩散大模型RDT

报告日期:11月07日(周四)10:30-11:30

报告要点:

Bimanual manipulation is essential in robotics, yet developing foundation models is extremely challenging due to the inherent complexity of coordinating two robot arms (leading to multi-modal action distributions) and the scarcity of training data. In this paper, we present the Robotics Diffusion Transformer (RDT), a pioneering diffusion foundation model for bimanual manipulation. RDT builds on diffusion models to effectively represent multi-modality, with innovative designs of a scalable Transformer to deal with the heterogeneity of multi-modal inputs and to capture the nonlinearity and high frequency of robotic data. To address data scarcity, we further introduce a Physically Interpretable Unified Action Space, which can unify the action representations of various robots while preserving the physical meanings of original actions, facilitating learning transferrable physical knowledge. With these designs, we managed to pre-train RDT on the largest collection of multi-robot datasets to date and scaled it up to 1.2B parameters, which is the largest diffusion-based foundation model for robotic manipulation. We finally fine-tuned RDT on a self-created multi-task bimanual dataset with over 6K+ episodes to refine its manipulation capabilities. Experiments on real robots demonstrate that RDT significantly outperforms existing methods. It exhibits zero-shot generalization to unseen objects and scenes, understands and follows language instructions, learns new skills with just 1~5 demonstrations, and effectively handles complex, dexterous tasks.
本文介绍了一种用于双臂机器人操作的创新扩散基础模型——机器人扩散Transform ransformer设计来处理多模态输入的异质性,捕捉机器人数据的非线性和高频特性。为了解决数据稀缺问题,文章进一步引入了一种物理可解释的统一动作空间,该空间可以统一各种机器人的动作表示,并保留原始动作的物理含义,方便学习可转移的物理知识。通过这些设计,作者成功地在目前最大的多机器人数据集上对RDT进行了预训练,并将其扩展到了12亿个参数,这是目前用于机器人操作的最大的基于扩散的基础模型。最后,作者在一个自己创建的多任务双臂数据集上对RDT进行了微调,以提高其操作能力。在真实机器人实验中,RDT明显优于现有方法。它能够零样本泛化到未见过的物体和场景,理解和遵循语言指令,只需1~5个演示就能学习新技能,并有效地处理复杂的灵巧任务。可访问https://rdt-robotics.github.io/rdt-robotics/获取代码和视频。

报告嘉宾:

刘松铭,清华大学计算机系二年级博士生,主要研究方向是具身智能和 AI for Science,此前在 ICML 和 NeurIPS 等顶级会议发表多篇论文,本科期间曾获清华大学特等奖学金。

扫码报名

更多热门报告