cs.AI updates on arXiv.org 15小时前
Emergent Heterogeneous Swarm Control Through Hebbian Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出将Hebbian学习应用于群机器人,实现异质性的自动产生。Hebbian学习通过局部信息实现生物启发的神经适应性,简化了学习异质控制过程的复杂性,减少了参数数量,并通过基于群体行为的进化学习规则最小化了优化异质群所需的前置知识,从而在标准基准任务中,Hebbian学习规则可作为多智能体强化学习的有效替代。

arXiv:2507.11566v1 Announce Type: cross Abstract: In this paper, we introduce Hebbian learning as a novel method for swarm robotics, enabling the automatic emergence of heterogeneity. Hebbian learning presents a biologically inspired form of neural adaptation that solely relies on local information. By doing so, we resolve several major challenges for learning heterogeneous control: 1) Hebbian learning removes the complexity of attributing emergent phenomena to single agents through local learning rules, thus circumventing the micro-macro problem; 2) uniform Hebbian learning rules across all swarm members limit the number of parameters needed, mitigating the curse of dimensionality with scaling swarm sizes; and 3) evolving Hebbian learning rules based on swarm-level behaviour minimises the need for extensive prior knowledge typically required for optimising heterogeneous swarms. This work demonstrates that with Hebbian learning heterogeneity naturally emerges, resulting in swarm-level behavioural switching and in significantly improved swarm capabilities. It also demonstrates how the evolution of Hebbian learning rules can be a valid alternative to Multi Agent Reinforcement Learning in standard benchmarking tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Hebbian学习 群机器人 异质性 神经适应性 多智能体强化学习
相关文章