arXiv:2404.13910v2 Announce Type: replace-cross Abstract: Attribution methods are primarily designed to study input component contributions to individual model predictions. However, some research applications require a summary of attribution patterns across the entire dataset to facilitate the interpretability of the scrutinized models at a task-level rather than an instance-level. It specifically applies when the localization of important input information is supposed to be stable for a specific problem but remains unidentified among numerous components. In this paper, we present a dataset-wise attribution method called Integrated Gradient Correlation (IGC) that enables region-specific analysis by a direct summation over associated components, and further relates the sum of all attributions to a model prediction score (correlation). We demonstrate IGC on synthetic data and fMRI neural signals (NSD dataset) with the study of the representation of image features in the brain and the estimation of the visual receptive field of neural populations. The resulting IGC attributions reveal selective patterns, coherent with respective model objectives.