cs.AI updates on arXiv.org 07月15日 12:27
Integrated Gradient Correlation: a Dataset-wise Attribution Method
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为IGC的数据集级归因方法,通过直接求和关联组件,实现特定区域的归因分析,并关联所有归因之和与模型预测得分。该方法在合成数据和fMRI神经信号数据集上展示了其在图像特征表示和神经群体视觉感受野估计中的应用,揭示了与模型目标一致的特定模式。

arXiv:2404.13910v2 Announce Type: replace-cross Abstract: Attribution methods are primarily designed to study input component contributions to individual model predictions. However, some research applications require a summary of attribution patterns across the entire dataset to facilitate the interpretability of the scrutinized models at a task-level rather than an instance-level. It specifically applies when the localization of important input information is supposed to be stable for a specific problem but remains unidentified among numerous components. In this paper, we present a dataset-wise attribution method called Integrated Gradient Correlation (IGC) that enables region-specific analysis by a direct summation over associated components, and further relates the sum of all attributions to a model prediction score (correlation). We demonstrate IGC on synthetic data and fMRI neural signals (NSD dataset) with the study of the representation of image features in the brain and the estimation of the visual receptive field of neural populations. The resulting IGC attributions reveal selective patterns, coherent with respective model objectives.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

归因分析 数据集级 IGC方法 模型预测 神经信号
相关文章