cs.AI updates on arXiv.org 07月15日 12:26
Toward accurate RUL and SOH estimation using reinforced graph-based PINNs enhanced with dynamic weights
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出RGPD框架,结合物理信息和时空学习,通过动态权重和Q-learning优化,在RUL和SOH预测中显著超越现有模型,展现强鲁棒性和高准确性。

arXiv:2507.09766v1 Announce Type: cross Abstract: Accurate estimation of Remaining Useful Life (RUL) and State of Health (SOH) is essential for Prognostics and Health Management (PHM) across a wide range of industrial applications. We propose a novel framework -- Reinforced Graph-Based Physics-Informed Neural Networks Enhanced with Dynamic Weights (RGPD) -- that combines physics-based supervision with advanced spatio-temporal learning. Graph Convolutional Recurrent Networks (GCRNs) embed graph-convolutional filters within recurrent units to capture how node representations evolve over time. Graph Attention Convolution (GATConv) leverages a self-attention mechanism to compute learnable, edge-wise attention coefficients, dynamically weighting neighbor contributions for adaptive spatial aggregation. A Soft Actor-Critic (SAC) module is positioned between the Temporal Attention Unit (TAU) and GCRN to further improve the spatio-temporal learning. This module improves attention and prediction accuracy by dynamically scaling hidden representations to minimize noise and highlight informative features. To identify the most relevant physical constraints in each area, Q-learning agents dynamically assign weights to physics-informed loss terms, improving generalization across real-time industrial systems and reducing the need for manual tuning. In both RUL and SOH estimation tasks, the proposed method consistently outperforms state-of-the-art models, demonstrating strong robustness and predictive accuracy across varied degradation patterns across three diverse industrial benchmark datasets.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PHM RUL SOH RGPD框架 物理信息神经网络
相关文章