cs.AI updates on arXiv.org 07月10日 12:05
Noisy PDE Training Requires Bigger PINNs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了物理信息神经网络(PINNs)在解决偏微分方程(PDEs)时的噪声问题,证明了降低监督PINN经验风险所需神经网络大小的下限,并实证了在特定条件下PINNs可达到低于噪声标签方差的低经验风险。

arXiv:2507.06967v1 Announce Type: cross Abstract: Physics-Informed Neural Networks (PINNs) are increasingly used to approximate solutions of partial differential equations (PDEs), especially in high dimensions. In real-world applications, data samples are noisy, so it is important to know when a predictor can still achieve low empirical risk. However, little is known about the conditions under which a PINN can do so effectively. We prove a lower bound on the size of neural networks required for the supervised PINN empirical risk to fall below the variance of noisy supervision labels. Specifically, if a predictor achieves an empirical risk $O(\eta)$ below $\sigma^2$ (variance of supervision data), then necessarily $d_N\log d_N\gtrsim N_s \eta^2$, where $N_s$ is the number of samples and $d_N$ is the number of trainable parameters of the PINN. A similar constraint applies to the fully unsupervised PINN setting when boundary labels are sampled noisily. Consequently, increasing the number of noisy supervision labels alone does not provide a ``free lunch'' in reducing empirical risk. We also show empirically that PINNs can indeed achieve empirical risks below $\sigma^2$ under such conditions. As a case study, we investigate PINNs applied to the Hamilton--Jacobi--Bellman (HJB) PDE. Our findings lay the groundwork for quantitatively understanding the parameter requirements for training PINNs in the presence of noise.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

物理信息神经网络 偏微分方程 噪声处理
相关文章