cs.AI updates on arXiv.org 07月08日 14:58
ST-LoRA: Low-rank Adaptation for Spatio-Temporal Forecasting
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种低秩自适应框架,优化时空预测模型,通过节点级别调整提高预测准确性,实验表明该方法性能提升7%,参数成本仅增加1%。

arXiv:2404.07919v2 Announce Type: replace-cross Abstract: Spatio-temporal forecasting is essential for understanding future dynamics within real-world systems by leveraging historical data from multiple locations. Existing methods often prioritize the development of intricate neural networks to capture the complex dependencies of the data. These methods neglect node-level heterogeneity and face over-parameterization when attempting to model node-specific characteristics. In this paper, we present a novel low-rank adaptation framework for existing spatio-temporal prediction models, termed \model, which alleviates the aforementioned problems through node-level adjustments. Specifically, we introduce the node-adaptive low-rank layer and node-specific predictor, capturing the complex functional characteristics of nodes while maintaining computational efficiency. Extensive experiments on multiple real-world datasets demonstrate that our method consistently achieves superior performance across various forecasting models with minimal computational overhead, improving performance by 7% with only 1% additional parameter cost. The source code is available at https://github.com/RWLinno/ST-LoRA.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时空预测 低秩自适应 节点调整
相关文章