cs.AI updates on arXiv.org 04月01日 12:14
On the Implicit Relation Between Low-Rank Adaptation and Differential Privacy
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了自然语言处理中低秩自适应(如LoRA和FLoRA)在数据隐私方面的应用。研究表明,这种方法在微调过程中,会在梯度中注入随机噪声,从而实现对微调数据的隐式隐私保护。作者通过理论分析和实验验证,证明了低秩自适应与差分隐私随机梯度下降(DPSGD)算法之间的联系,并指出低秩自适应在降低计算复杂度的同时,无需DPSGD的高空间复杂度,即可提供隐私保护。研究结果揭示了低秩自适应在保护微调数据隐私方面的潜力。

🧠低秩自适应方法(如LoRA和FLoRA)在自然语言处理中被广泛用于模型微调,通过在预训练模型中引入可训练的低秩分解矩阵,减少需要微调的参数量。

📢研究表明,低秩自适应在微调过程中,会在梯度中注入随机噪声。噪声的方差与自适应的秩相关,秩越小,噪声方差越大。

🛡️通过建立Berry-Esseen型界限,研究者证明了低秩自适应的动态与差分隐私微调(DPSGD)相似。这表明,低秩自适应在一定程度上提供了隐私保护。

⚖️结合Johnson-Lindenstrauss引理和梯度缩放,低秩自适应可以近似等同于使用固定噪声尺度的DPSGD算法来微调适配器。

💡实验结果证实了低秩自适应在降低计算复杂度的同时,能够对微调数据提供隐式隐私保护,无需DPSGD带来的高空间复杂度。

arXiv:2409.17538v4 Announce Type: replace-cross Abstract: A significant approach in natural language processing involves large-scale pre-training of models on general domain data followed by their adaptation to specific tasks or domains. As models grow in size, full fine-tuning all of their parameters becomes increasingly impractical. To address this, some methods for low-rank task adaptation of language models have been proposed, e.g., LoRA and FLoRA. These methods keep the pre-trained model weights fixed and incorporate trainable low-rank decomposition matrices into some layers of the transformer architecture, called adapters. This approach significantly reduces the number of trainable parameters required for downstream tasks compared to full fine-tuning all parameters. In this work, we look at low-rank adaptation from the lens of data privacy. We show theoretically that the low-rank adaptation used in LoRA and FLoRA leads to the injection of some random noise into the batch gradients w.r.t the adapter parameters. We quantify the variance of the injected noise and show that the smaller the adaptation rank, the larger the noise variance. By establishing a Berry-Esseen type bound on the total variation distance between distribution of the injected noise and a Gaussian distribution with the same variance, we show that the dynamics of low-rank adaptation is close to that of differentially private fine-tuning of the adapters. Finally, using Johnson-Lindenstrauss lemma, we show that when augmented with gradient scaling, low-rank adaptation is very close to performing DPSGD algorithm with a fixed noise scale to fine-tune the adapters. Suggested by our theoretical findings and approved by our experimental results, we show that low-rank adaptation, besides mitigating the space and computational complexities, implicitly provides a privacy protection w.r.t the fine-tuning data, without inducing the high space complexity of DPSGD.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

低秩自适应 数据隐私 自然语言处理 LoRA FLoRA
相关文章