cs.AI updates on arXiv.org 07月08日 14:58
Controlling Thinking Speed in Reasoning Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种使大型推理模型(LRMs)近似人类智能的方法,通过动态调整思维速度优化准确性与效率,解决LRMs在快速思维上的不足,实现高效率推理。

arXiv:2507.03704v1 Announce Type: cross Abstract: Human cognition is theorized to operate in two modes: fast, intuitive System 1 thinking and slow, deliberate System 2 thinking. While current Large Reasoning Models (LRMs) excel at System 2 thinking, their inability to perform fast thinking leads to high computational overhead and latency. In this work, we enable LRMs to approximate human intelligence through dynamic thinking speed adjustment, optimizing accuracy-efficiency trade-offs. Our approach addresses two key questions: (1) how to control thinking speed in LRMs, and (2) when to adjust it for optimal performance. For the first question, we identify the steering vector that governs slow-fast thinking transitions in LRMs' representation space. Using this vector, we achieve the first representation editing-based test-time scaling effect, outperforming existing prompt-based scaling methods. For the second question, we apply real-time difficulty estimation to signal reasoning segments of varying complexity. Combining these techniques, we propose the first reasoning strategy that enables fast processing of easy steps and deeper analysis for complex reasoning. Without any training or additional cost, our plug-and-play method yields an average +1.3% accuracy with -8.6% token usage across leading LRMs and advanced reasoning benchmarks. All of our algorithms are implemented based on vLLM and are expected to support broader applications and inspire future research.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型推理模型 思维速度调整 效率优化
相关文章