cs.AI updates on arXiv.org 前天 13:53
QF: Quick Feedforward AI Model Training without Gradient Back Propagation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为Quick Feedforward (QF) Learning的知识融合框架,该框架能将指令知识高效地转化为模型权重,无需梯度回传,且更新计算简洁,参数修改最小,保留先验知识。QF Learning允许模型在同一运行环境中进行训练和推理,提高资源效率,更贴近人脑运作方式。

arXiv:2507.04300v1 Announce Type: cross Abstract: We propose Quick Feedforward (QF) Learning, a novel knowledge consolidation framework for transformer-based models that enables efficient transfer of instruction derived knowledge into model weights through feedforward activations without any gradient back propagation. Unlike traditional finetuning, QF updates are computed in closed form, require minimal parameter modification, and preserve prior knowledge. Importantly, QF allows models to train and infer within the same runtime environment, making the process more resource efficient and closely aligned with how the human brain operates. Code and models are open sourced on GitHub. I hope QF Learning inspires a more efficient and brain-like paradigm for AI systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

QF Learning 知识融合 Transformer模型 高效训练 人脑模拟
相关文章