cs.AI updates on arXiv.org 07月08日 12:33
Graded Neural Networks
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于分级向量空间的新型分级神经网络(GNN)框架,通过引入代数分级扩展经典神经网络架构,并设计适应特征重要性的分级神经元、层、激活函数和损失函数,为分级计算提供了基础。

arXiv:2502.17751v2 Announce Type: replace-cross Abstract: This paper presents a novel framework for graded neural networks (GNNs) built over graded vector spaces $\V_\w^n$, extending classical neural architectures by incorporating algebraic grading. Leveraging a coordinate-wise grading structure with scalar action $\lambda \star \x = (\lambda^{q_i} x_i)$, defined by a tuple $\w = (q0, \ldots, q{n-1})$, we introduce graded neurons, layers, activation functions, and loss functions that adapt to feature significance. Theoretical properties of graded spaces are established, followed by a comprehensive GNN design, addressing computational challenges like numerical stability and gradient scaling. Potential applications span machine learning and photonic systems, exemplified by high-speed laser-based implementations. This work offers a foundational step toward graded computation, unifying mathematical rigor with practical potential, with avenues for future empirical and hardware exploration.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

分级神经网络 GNN 代数分级 特征重要性
相关文章