MarkTechPost@AI 2024年09月13日
Evaluating Geometric Awareness in Large-Scale Vision Models for Long-Term Point Tracking
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章探讨了大规模视觉模型在长期点跟踪中的几何意识评估,包括模型在不同情况下的表现及多种实验设置

🎯大规模视觉基础模型具有强大的泛化能力,在多种计算机视觉任务中表现出色,且能适应多种任务而无需大量特定训练。在双视图对应方面,这些模型已被证明特别有用,而理解和维护两个视点之间的对应关系对多种任务至关重要

💡在动态复杂情况下,模型在长期对应任务中的表现是一个未受太多关注的重要问题。长期对应指跟踪同一物理点随时间的变化,这比双视图对应更复杂,许多实际应用都与此相关

🔍为解决这一难题,研究者对视觉基础模型的几何意识进行了评估,采用了三种实验设置,包括零样本设置、使用低容量层进行探测、使用低秩自适应(LoRA)进行微调,评估结果产生了有意义的发现

👍在零样本条件下,发现StableDiffusion和DINOv2等模型具有较好的几何对应能力。DINOv2在适应情况下的表现与完全监督模型相当,显示其作为长期对应学习任务的优秀初始化的潜力

The strong generalization abilities of large-scale vision foundation models have contributed to their amazing performance in various computer vision tasks. These models are quite adaptable since they can handle a number of jobs without requiring a lot of task-specific training. Two-view correspondence, the act of matching points or features in one image with corresponding points in another, is one area where these models have proven especially useful. This comprehension and maintenance of correspondence between two viewpoints is essential for tasks like object recognition, picture matching, and 3D reconstruction.

However, a significant problem that has not received much attention is how well these models work in long-term correspondence tasks in dynamic and complicated situations. Tracking the same physical point over time is referred to as long-term correspondence, particularly in video sequences when the point may change in appearance illumination or may be partially obscured. Since it requires keeping a point’s geometric integrity across numerous frames or views, this is far more complicated than two-view correspondence. Numerous practical applications, including autonomous driving, robotics, and object tracking in surveillance, revolve around this issue.

In order to tackle this difficulty, researchers have assessed the geometric awareness of visual foundation models within the particular domain of point tracking. This includes following a 2D projection of an identical physical point over the course of a video clip. Three separate experimental setups have been used for the evaluation.

    Zero-Shot Setting: In this configuration, the models are not trained further. The objective is to evaluate the model’s tracking ability using only the features it has already learned. A geometrically aware model should be able to follow the same place throughout time and recognize similar characteristics in different frames.
    Using Low-Capacity Layers for Probing: In this method, the pre-trained foundation model is layered with low-capacity layers that are taught to probe the geometric information embedded within the model. This enables researchers to evaluate if the model contains geometric properties that are practical and applicable to correspondence tasks involving long-term learning.
    Fine-Tuning with Low-Rank Adaptation (LoRA): In this scenario, a method known as Low-Rank Adaptation (LoRA) is used to fine-tune the foundation model. In addition to being computationally less expensive, this method enables effective fine-tuning by modifying only a limited number of parameters, enhancing the model’s performance on the particular job of point tracking.

These assessments’ outcomes produced insightful findings. In the zero-shot condition, it was discovered that two well-known vision foundation models, Stable Diffusion and DINOv2, had better geometric correspondence abilities. This suggests that even in the absence of extra training for point-tracking tasks, these models possess a robust intrinsic comprehension of geometric relationships. 

DINOv2 showed performance in the adaption situation that was on par with fully supervised models. This indicates that DINOv2 can perform comparably to models that have been specially trained for the job with little fine-tuning, indicating its potential as a great initialization for learning tasks involving long-term correspondence.

In conclusion, this research broadens the range of circumstances in which large-scale vision models can be applied, even though they have already demonstrated significant promise in two-view correspondence. This includes long-term point tracking. The study demonstrates that models like Stable Diffusion and DINOv2 possess great geometric awareness, making them extremely suitable for sophisticated computer vision applications like object tracking and autonomous systems. These models are evaluated in zero-shot, probing, and fine-tuning scenarios.


Check out the Paper and Project. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

Don’t Forget to join our 50k+ ML SubReddit

FREE AI WEBINAR: ‘SAM 2 for Video: How to Fine-tune On Your Data’ (Wed, Sep 25, 4:00 AM – 4:45 AM EST)

The post Evaluating Geometric Awareness in Large-Scale Vision Models for Long-Term Point Tracking appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视觉模型 几何意识 长期点跟踪 实验设置
相关文章