MarkTechPost@AI 2024年07月31日
Baidu AI Presents an End-to-End Self-Reasoning Framework to Improve the Reliability and Traceability of RAG Systems
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

百度AI提出自推理框架,提升RALM可靠性和可追溯性,该框架通过多过程生成自推理轨迹,在多个数据集上表现出色

💡百度AI的自推理框架通过三个过程生成自推理轨迹,包括相关性感知过程、证据感知选择过程和轨迹分析过程,旨在提高响应准确性

🎉该框架在四个公共数据集上进行了评估,其性能优于现有模型,且在仅使用2000个训练样本的情况下能与GPT - 4的性能相匹配

🌟许多研究致力于通过整合外部信息来提升LLM,而此框架在端到端框架内识别关键语句并引用相关文档,无需外部模型,提高了效率

🎯在两个短形式QA数据集、一个长形式QA数据集和一个事实验证数据集上进行了广泛实验,评估了SELF - REASONING框架的有效性

The Retrieval-Augmented Language Model (RALM) enhances LLMs by integrating external knowledge during inference, which reduces factual inaccuracies. Despite this, RALMs face challenges in reliability and traceability. Noisy retrieval can lead to unhelpful or incorrect responses, and a lack of proper citations complicates verifying the model’s outputs. Efforts to improve retrieval robustness include using natural language inference and document summarization models, which add complexity and cost. Optimizing and selecting these auxiliary models remains a significant challenge for effective implementation.

Researchers from Baidu Inc., China, propose a self-reasoning framework to enhance the reliability and traceability of RALMs. This framework generates self-reasoning trajectories through three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process. It aims to improve response accuracy by teaching the model to reason with retrieved documents. Evaluated on four public datasets, this method outperforms existing models and matches GPT-4 performance using only 2,000 training samples. The framework enhances interpretability and traceability without needing external models.

Many studies have aimed to boost LLMs by integrating external information. Approaches include pre-training with retrieved passages, incorporating citations, and using end-to-end systems that retrieve evidence and generate answers without changing model weights. Some methods dynamically instruct or fine-tune LLMs to use retrieval tools, while others focus on improving factual accuracy through retrieval and editing. Techniques such as filtering irrelevant documents, document compression, and error correction have been explored to enhance robustness. The approach, in contrast, identifies key sentences and cites relevant documents within an end-to-end framework, avoiding the need for external models and offering efficiency without relying on special tokens or extensive training samples.

The problem of retrieval-augmented generation with self-reasoning involves defining the process where an LLM generates answers based on reasoning trajectories. Given a query and a document corpus, the model produces answers composed of statements and tokens, with each statement citing relevant documents. The approach involves training the LLM to generate reasoning trajectories and answers in one pass. The process is divided into three stages: evaluating document relevance, selecting and citing key sentences, and analyzing reasoning to produce a final answer. Data is generated and quality-controlled using automated tools and filtering methods to ensure accuracy before training the model on this augmented data.

Extensive experiments were conducted on two short-form QA datasets, one long-form QA dataset, and one fact verification dataset to evaluate the SELF-REASONING framework. The framework’s effectiveness was assessed using various off-the-shelf retrievers and metrics tailored to each task, including accuracy, exact match recall, citation recall, and precision. Compared to basic and retrieval-augmented LLMs, the SELF-REASONING approach demonstrated superior performance, particularly in long-form QA and fact verification tasks. It outperformed most baseline models, including those requiring additional training data or external tools, while achieving high citation recall and accuracy with fewer training samples and reduced resource consumption.

An ablation study assessed the contributions of each component in the SELF-REASONING framework across short-form QA and fact verification datasets. Results showed that omitting the Relevant-Aware Process (RAP), Evidence-Aware Selective Process (EAP), or Trajectory Analysis Process (TAP) significantly reduced performance, highlighting the importance of each component. The framework demonstrated robustness to noisy and shuffled retrieved documents, outperforming other models in such conditions. Human citation analysis showed that the framework’s citation quality is well-aligned with automatic evaluations, often with better scores. The findings underscore the framework’s effectiveness in enhancing LLM performance on knowledge-intensive tasks.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

Don’t Forget to join our 47k+ ML SubReddit

Find Upcoming AI Webinars here

The post Baidu AI Presents an End-to-End Self-Reasoning Framework to Improve the Reliability and Traceability of RAG Systems appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

百度AI 自推理框架 LLM 可靠性 可追溯性
相关文章