arXiv:2508.12314v1 Announce Type: cross Abstract: We present a novel interdisciplinary framework that bridges synchronization theory and multi-agent AI systems by adapting the Kuramoto model to describe the collective dynamics of heterogeneous AI agents engaged in complex task execution. By representing AI agents as coupled oscillators with both phase and amplitude dynamics, our model captures essential aspects of agent specialization, influence, and communication within networked systems. We introduce an order parameter to quantify the degree of coordination and synchronization, providing insights into how coupling strength, agent diversity, and network topology impact emergent collective behavior. Furthermore, we formalize a detailed correspondence between Chain-of-Thought prompting in AI reasoning and synchronization phenomena, unifying human-like iterative problem solving with emergent group intelligence. Through extensive simulations on all-to-all and deterministic scale-free networks, we demonstrate that increased coupling promotes robust synchronization despite heterogeneous agent capabilities, reflecting realistic collaborative AI scenarios. Our physics-informed approach establishes a rigorous mathematical foundation for designing, analyzing, and optimizing scalable, adaptive, and interpretable multi-agent AI systems. This work opens pathways for principled orchestration of agentic AI and lays the groundwork for future incorporation of learning dynamics and adaptive network architectures to further enhance system resilience and efficiency.