cs.AI updates on arXiv.org 13小时前
HuBERT-VIC: Improving Noise-Robust Automatic Speech Recognition of Speech Foundation Model via Variance-Invariance-Covariance Regularization
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为HuBERT-VIC的噪声鲁棒语音模型,通过方差、不变性和协方差正则化技术提升模型对噪声语音的鲁棒性,有效改善了不同噪声条件下的泛化能力,性能提升显著。

arXiv:2508.12292v1 Announce Type: cross Abstract: Noise robustness in speech foundation models (SFMs) has been a critical challenge, as most models are primarily trained on clean data and experience performance degradation when the models are exposed to noisy speech. To address this issue, we propose HuBERT-VIC, a noise-robust SFM with variance, in-variance, and covariance regularization (VICReg) objectives. These objectives adjust the statistics of noisy speech representations, enabling the model to capture diverse acoustic characteristics and improving the generalization ability across different types of noise. When applied to HuBERT, our model shows relative performance improvements of 23.3% on LibriSpeech test-clean and 13.2% on test-other, compared to the baseline model pre-trained on noisy speech.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

HuBERT-VIC 噪声鲁棒 语音模型 噪声处理 泛化能力
相关文章