cs.AI updates on arXiv.org 13小时前
CRoC: Context Refactoring Contrast for Graph Anomaly Detection with Limited Supervision
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为CRoC的图异常检测新框架,通过联合利用有限标注数据和大量未标注数据训练GNN,有效解决图异常检测中的数据稀疏问题,实验结果表明CRoC在有限标注设置下优于现有方法。

arXiv:2508.12278v1 Announce Type: cross Abstract: Graph Neural Networks (GNNs) are widely used as the engine for various graph-related tasks, with their effectiveness in analyzing graph-structured data. However, training robust GNNs often demands abundant labeled data, which is a critical bottleneck in real-world applications. This limitation severely impedes progress in Graph Anomaly Detection (GAD), where anomalies are inherently rare, costly to label, and may actively camouflage their patterns to evade detection. To address these problems, we propose Context Refactoring Contrast (CRoC), a simple yet effective framework that trains GNNs for GAD by jointly leveraging limited labeled and abundant unlabeled data. Different from previous works, CRoC exploits the class imbalance inherent in GAD to refactor the context of each node, which builds augmented graphs by recomposing the attributes of nodes while preserving their interaction patterns. Furthermore, CRoC encodes heterogeneous relations separately and integrates them into the message-passing process, enhancing the model's capacity to capture complex interaction semantics. These operations preserve node semantics while encouraging robustness to adversarial camouflage, enabling GNNs to uncover intricate anomalous cases. In the training stage, CRoC is further integrated with the contrastive learning paradigm. This allows GNNs to effectively harness unlabeled data during joint training, producing richer, more discriminative node embeddings. CRoC is evaluated on seven real-world GAD datasets with varying scales. Extensive experiments demonstrate that CRoC achieves up to 14% AUC improvement over baseline GNNs and outperforms state-of-the-art GAD methods under limited-label settings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图神经网络 异常检测 对比学习
相关文章