cs.AI updates on arXiv.org 16小时前
BRIEF: BRain-Inspired network connection search with Extensive temporal feature Fusion enhances disease classification
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

提出一种基于脑启发特征的融合框架BRIEF,通过改进神经网络连接搜索策略和Transformer多特征融合模块,优化fMRI分类模型,在精神分裂症和自闭症谱系障碍分类中取得显著性能提升。

arXiv:2508.11732v1 Announce Type: cross Abstract: Existing deep learning models for functional MRI-based classification have limitations in network architecture determination (relying on experience) and feature space fusion (mostly simple concatenation, lacking mutual learning). Inspired by the human brain's mechanism of updating neural connections through learning and decision-making, we proposed a novel BRain-Inspired feature Fusion (BRIEF) framework, which is able to optimize network architecture automatically by incorporating an improved neural network connection search (NCS) strategy and a Transformer-based multi-feature fusion module. Specifically, we first extracted 4 types of fMRI temporal representations, i.e., time series (TCs), static/dynamic functional connection (FNC/dFNC), and multi-scale dispersion entropy (MsDE), to construct four encoders. Within each encoder, we employed a modified Q-learning to dynamically optimize the NCS to extract high-level feature vectors, where the NCS is formulated as a Markov Decision Process. Then, all feature vectors were fused via a Transformer, leveraging both stable/time-varying connections and multi-scale dependencies across different brain regions to achieve the final classification. Additionally, an attention module was embedded to improve interpretability. The classification performance of our proposed BRIEF was compared with 21 state-of-the-art models by discriminating two mental disorders from healthy controls: schizophrenia (SZ, n=1100) and autism spectrum disorder (ASD, n=1550). BRIEF demonstrated significant improvements of 2.2% to 12.1% compared to 21 algorithms, reaching an AUC of 91.5% - 0.6% for SZ and 78.4% - 0.5% for ASD, respectively. This is the first attempt to incorporate a brain-inspired, reinforcement learning strategy to optimize fMRI-based mental disorder classification, showing significant potential for identifying precise neuroimaging biomarkers.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

fMRI分类 神经网络连接搜索 Transformer 精神分裂症 自闭症谱系障碍
相关文章