arXiv:2508.11710v1 Announce Type: cross Abstract: Security vulnerabilities present in a code that has been written in diverse programming languages are among the most critical yet complicated aspects of source code to detect. Static analysis tools based on rule-based patterns usually do not work well at detecting the context-dependent bugs and lead to high false positive rates. Recent developments in artificial intelligence, specifically the use of transformer-based models like CodeBERT and CodeLlama, provide light to this problem, as they show potential in finding such flaws better. This paper presents the implementations of these models on various datasets of code vulnerability, showing how off-the-shelf models can successfully produce predictive capacity in models through dynamic fine-tuning of the models on vulnerable and safe code fragments. The methodology comprises the gathering of the dataset, normalization of the language, fine-tuning of the model, and incorporation of ensemble learning and explainable AI. Experiments show that a well-trained CodeBERT can be as good as or even better than some existing static analyzers in terms of accuracy greater than 97%. Further study has indicated that although language models can achieve close-to-perfect recall, the precision can decrease. A solution to this is given by hybrid models and validation procedures, which will reduce false positives. According to the results, the AI-based solutions generalize to different programming languages and classes of vulnerability. Nevertheless, robustness, interpretability, and deployment readiness are still being developed. The results illustrate the probabilities that AI will enhance the trustworthiness in the usability and scalability of machine-learning-based detectors of vulnerabilities.