cs.AI updates on arXiv.org 13小时前
Does Prior Data Matter? Exploring Joint Training in the Context of Few-Shot Class-Incremental Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章探讨了在少量样本情况下进行增量学习(FSCIL)的挑战,提出了一种新的不平衡感知联合训练基准,并分析了在实际场景中如何选择合适的训练策略。

arXiv:2503.10003v2 Announce Type: replace Abstract: Class-incremental learning (CIL) aims to adapt to continuously emerging new classes while preserving knowledge of previously learned ones. Few-shot class-incremental learning (FSCIL) presents a greater challenge that requires the model to learn new classes from only a limited number of samples per class. While incremental learning typically assumes restricted access to past data, it often remains available in many real-world scenarios. This raises a practical question: should one retrain the model on the full dataset (i.e., joint training), or continue updating it solely with new data? In CIL, joint training is considered an ideal benchmark that provides a reference for evaluating the trade-offs between performance and computational cost. However, in FSCIL, joint training becomes less reliable due to severe imbalance between base and incremental classes. This results in the absence of a practical baseline, making it unclear which strategy is preferable for practitioners. To this end, we revisit joint training in the context of FSCIL by incorporating imbalance mitigation techniques, and suggest a new imbalance-aware joint training benchmark for FSCIL. We then conduct extensive comparisons between this benchmark and FSCIL methods to analyze which approach is most suitable when prior data is accessible. Our analysis offers realistic insights and guidance for selecting training strategies in real-world FSCIL scenarios. Code is available at: https://github.com/shiwonkim/Joint_FSCIL

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

增量学习 FSCIL 联合训练 不平衡数据 训练策略
相关文章