cs.AI updates on arXiv.org 13小时前
SGPT: Few-Shot Prompt Tuning for Signed Graphs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为SGPT的图提示框架,通过平衡理论和任务模板,将预训练的无签图神经网络应用于少样本有签图任务,显著提升学习效果。

arXiv:2412.12155v2 Announce Type: replace-cross Abstract: Signed Graph Neural Networks (SGNNs) are effective in learning expressive representations for signed graphs but typically require substantial task-specific labels, limiting their applicability in label-scarce industrial scenarios. In contrast, unsigned graph structures are abundant and can be readily leveraged to pre-train Graph Neural Networks (GNNs), offering a promising solution to reduce supervision requirements in downstream signed graph tasks. However, transferring knowledge from unsigned to signed graphs is non-trivial due to the fundamental discrepancies in graph types and task objectives between pre-training and downstream phases. To address this challenge, we propose Signed Graph Prompt Tuning (SGPT), a novel graph prompting framework that adapts pre-trained unsigned GNNs to few-shot signed graph tasks. We first design a graph template based on balance theory to disentangle mixed node relationships introduced by negative links, mitigating the structural mismatches between unsigned and signed graphs. We further introduce a task template that reformulates downstream signed tasks into a unified link prediction objective, aligning their optimization goals with the pre-training task. Furthermore, we develop feature prompts that align downstream semantic spaces with the feature spaces learned during pre-training, and semantic prompts to integrate link sign semantics in a task-aware manner. We conduct extensive experiments on seven benchmark signed graph datasets, demonstrating that SGPT significantly outperforms existing state-of-the-art methods, establishing a powerful and generalizable solution for few-shot signed graph learning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SGNNs Graph Prompt Tuning 少样本学习 有签图
相关文章