arXiv:2409.14500v3 Announce Type: replace-cross Abstract: Although data that can be naturally represented as graphs is widespread in real-world applications across diverse industries, popular graph ML benchmarks for node property prediction only cover a surprisingly narrow set of data domains, and graph neural networks (GNNs) are often evaluated on just a few academic citation networks. This issue is particularly pressing in light of the recent growing interest in designing graph foundation models. These models are supposed to be able to transfer to diverse graph datasets from different domains, and yet the proposed graph foundation models are often evaluated on a very limited set of datasets from narrow applications. To alleviate this issue, we introduce GraphLand: a benchmark of 14 diverse graph datasets for node property prediction from a range of different industrial applications. GraphLand allows evaluating graph ML models on a wide range of graphs with diverse sizes, structural characteristics, and feature sets, all in a unified setting. Further, GraphLand allows investigating such previously underexplored research questions as how realistic temporal distributional shifts under transductive and inductive settings influence graph ML model performance. To mimic realistic industrial settings, we use GraphLand to compare GNNs with gradient-boosted decision trees (GBDT) models that are popular in industrial applications and show that GBDTs provided with additional graph-based input features can sometimes be very strong baselines. Further, we evaluate currently available general-purpose graph foundation models and find that they fail to produce competitive results on our proposed datasets.